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metabolomics data

Introduction
A number of machine learning methods have been applied 
to bioinformatics and metabolite analyses including 
self-organizing maps, support vector machines, kernel 
machines, Bayesian networks or fuzzy logic. Advanced 
machine learning algorithms have been also applied to in 

silico MS chromatogram annotation for metabolite 
identi�cation. As a general approach in peak integration 
algorithms are designed to determine the start point and 
end point of a chromatographic peak to enable a 
calculation of peak area [1, 2]. 

Figure 1. General procedure for peak integration

Figure 2. Problem on manual peak integration

Overview
In this study a deep learning algorithm was applied to automating peak integration for metabolomic samples. The objective 
was not only to accelerate reliable and dependable peak integration but also to eliminate manual parameters selection. 

Metabolomics samples are complex mixtures of 
compounds representing a diverse array of chemical space 
and idiosyncratic chromatographic behavior. A simple 
global model for peak detection and integration in 
LC-MS/MS methods commonly results in the need to 
manually change the baseline for several compounds in the 
sample. 

For example, for the test data it takes several hours for an 
‘expert' operator to manually check, reintegrate and 
reprocess peak integration for 30 samples each containing 
100 compounds (that is 3000 peak integration reviews) on 
food analysis. Consequently, there is a clear need for 
automation. The purpose of this study was as follows; 
• to create a uni�ed standard on peak integration
• to achieve correct peak integration higher than 90%
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In this study, the task of developing a robust peak integration for idiosyncratic chromatography behavior was formulated 
as general object recognition and Single Shot MultiBox Detector (SSD [3]) was used as a method for detecting objects. 

Transformation of input and output

Methods

Figure 3. Transformation of input and output

Figure 4. Data augmentation
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As a �rst step, unseparated peaks having known area value 
were generated. Second, correct peak integration (label) 
was added. Third, a peak insertion point to a blank 
chromatogram was determined. Fourth, it is merged with 

the peak and baseline were merged to generate new 
chromatogram. Using this approach, a learning pattern 
was applied to chromatographic behavior. 

Data augmentation
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We de�ned “true positive” as the predicted and correct peak ranges overlap by 50% or more. 

Evaluation

Figure 5. Precision, Recall and F-measure

Correct Answer Range

Yes No

Predicted
Range 
with AI

Positive True positive(TP) False Positive(FP)

Negative False Negative(FN) True Negative(TN)

Precision = 
TP

TP+FP

Recall = 
TP

TP+FN

F-measure 

=2 ∙
Precision∙Recall
Precison+Recall

We also de�ned the difference between the peak area predicted by the parameter-free deep learning method and the 
correct peak area given by the expert operator.

We de�ned a performance metric “correction time” as w1 ∙ FP + w2 ∙ FN + w3 ∙ S + w4 ∙ C, where S is the number of peaks 
manual baseline correction were needed, C is the number of matching baseline and wi (i=1, 2, 3, 4) are the time taken to 
con�rm and correct FP, FN, S and C. The values of FP, FN, S, C and correction time were measured for 8 data sets. From 
these results, wi (i=1, 2, 3, 4) were estimated by solving the simultaneous equations. The following results were obtained:

Figure 6. Baseline correction
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Figure 7. Peak integration using deep learning

The input of the deep learning is a chromatogram which consists of retention time and intensity. The output is the start 
and end-point of peak integration. 

Peak integration using deep learning

Results

To determine major features or combinations of features 
that can result in robust, dependable peak integration, a 
training set of primary metabolites including a panel of 
amino acid, organic acid and nucleotide extracted from a 
wide variety of samples were used as matrix. Compounds 
were detected using high performance LC-MS/MS analysis 
(Shimadzu Corporation). The data was curated by the 

expert operator and was split into training set of 11,011 
data, validation set of 1,400 data, and test set of 1,400 
data for each compound. The training set was used to 
develop and train the model. However, much larger 
dataset is generally required to train deep learning models. 
Therefore, we performed the data augmentation to 
increase training data from 11,011 data to 73,303 data.

Training, validation and test sets
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We evaluated precision, recall and F-measure of the deep learning method, i-PeakFinder [1] and Chromatopac™ [2]. The 
parameter-free deep learning method achieves F-measure of 0.910 (precision of 0.883 and recall of 0.938).

Evaluation of algorithms

Training: 11,011
Validation:

1,400
Test:
1,400

Training: 73,303
Validation:

1,400
Test:
1,400

Number of target compounds considered in the analysis: 99
(Primary metabolite including amino acids, organic acids and nucleotide contained in TCA cycle)
A wide variety of samples
A number of analyzed with same sample: multiple times

The expert operator performed peak integration with manual operation.

Characteristics of collected data: 13,811

Labeled Data: 13,811

Labeling

Split for each compound

Data Augmentation

Figure 8. Training, validation and test sets

1860

1469

4364

True positive(TP) +
False positive(FP)

1751

1751

1751

True positive(TP) +
False negative(FN)Algorithm name

Deep learning method

i-PeakFinder [1]*

Chromatopac [2]*

Table 1. Peak detection results

0.883

0.864

0.349

Precision

0.938

0.725

0.870

Recall

0.910

0.788

0.498

F-measure

*Peak integration parameters are optimized before comparison for i-PeakFinder and Chromatopac. 
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Figure 9 shows the result of the expert operator and the result of the AI. They show the parameter-free deep learning 
method is consistent with peak integration with expert operator.

We also calculated the difference between the peak area 
predicted by the deep learning method and the correct 
peak area given by the expert operator. The difference of 
the peak area was used to determine if baseline 
correction was necessary. Furthermore, the estimated 

correction time of each algorithm was evaluated on the 
condition that an expert operator manually integrates 
peaks. The estimated correction time of proposed method 
is 43% smaller than i-PeakFinder [1] and 65% smaller 
than the Chromatopac [2].

217

200

2842

FP

108

482

229

FNAlgorithm name

Deep learning method

i-PeakFinder [1]

Chromatopac [2]

Table 2. Estimated correction time results

293

211

483

number of
corrected baseline

1350

1058

1039

number of
matching baseline

2.46

4.29

7.02

- 43%

- 65%

Estimated
correction time

(hour)

Conclusions
• We developed the parameter-free deep learning method. 
• We developed technology to produce extra data to compensate for the lack of training data. 
• We proposed the new performance metric to measure correction time.
• The parameter-free deep learning method correctly integrates 91% of all peaks.

TP

Figure 9. Comparison of the expert operator and deep learning method

Deep
learning
method

Expert 
operator

Int.

Int.

Int.

Int.

Int.

Int.
RT

RT

RT

RT

RT

RT



First Edition: June, 2019

© Shimadzu Corporation, 2019

Deep learning methods applied to the analysis of
metabolomics data

References
1. https://www.shimadzu.com/an/data-net/labsolutions/data_integrity.html
2. https://www.shimadzu.com/an/hplc/support/lib/lctalk/23/23lab.html 
3. Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." arXiv preprint arXiv:1512.02325 (2015). Link

Disclaimer: For Research Use Only (RUO). Not for use in diagnostic procedures.
Chromatopac is a trademark of Shimadzu Corporation.


