

ASMS 2017 TP-222

Toshikazu Minohata ; Yutaro Yamamura Shimadzu Corporation, Kyoto, Japan

Introduction

In Forensic Toxicology, LC/MS/MS has become a preferred method for the routine quantitative and qualitative analysis of drugs of abuse. LC/MS/MS allows for the simultaneous analysis of multiple compounds in a single run, thus enabling a fast and high throughput analysis. In this study, we developed Multiple-Target Screening (MTS) method for forensic toxicology to reduce false positive and negative

using MS/MS spectral library database. MTS method consists of multiple reaction monitoring (MRM) and product ion scans at three collision energies to confirm the compound identification based on mass spectral library searching. The mass spectral library was created using certified reference materials from over 1,200 compounds for forensic toxicology.

Methods and Materials

Biological sample preparation was carried out by the modified QuEChERS extraction method. Treated samples were measured using a Nexera UHPLC system and LC-MS/MS (Shimadzu Corporation, Japan). Samples were separated on a Phenomenex kinetex XB-C18 (100x2mm,

 $2.6\mu m$) at a column temperature of 40 °C for 15 min. A flow rate of 0.3 mL/min was used together with a binary gradient system. 10mM acetic formate with 0.1% Formic acid in water and methanol were used for mobile phases.

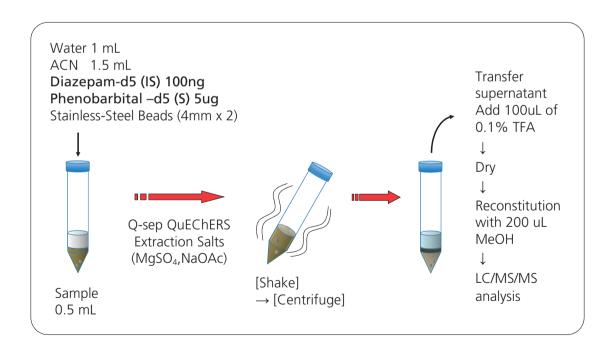


Figure 1 Scheme of the modified QuEChERS procedure

Analytical Conditions

HPLC (Nexera UHPLC system)

Column : Phenomenex Kinetex (2.1 mml.D. x 100 mmL., 2.6um)

Guard Column : Phenomenex SecurityGuard Ultra C18 2.1mmlD

Mobile Phase A: 10mmol/L Ammonium formate + 0.1% Formic acid - WaterMobile Phase B: 10mmol/L Ammonium formate + 0.1% Formic acid - MethanolGradient Program: 5%B (0 min) - 95%B (7.5-10 min) -5% (10.01-15 min)

Flow Rate : 0.3 mL / min = 95%B (7.5-10 min) = 5

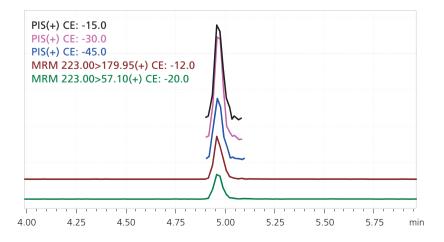
Column Temperature : 40 °C

LCMS (triple quadrupole mass spectrometry)

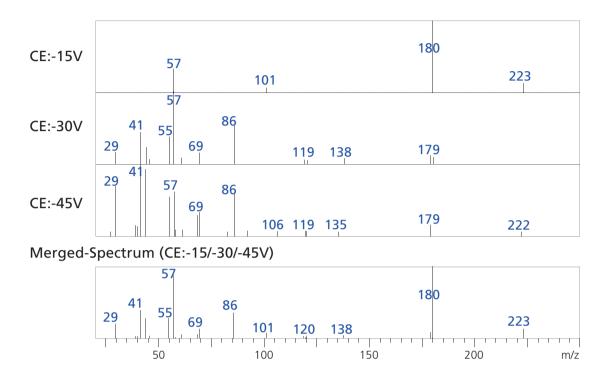
Ionization : ESI

Polarity : Positive & Negative

Nebulizing Gas Flow : 3 L / min
Drying Gas Pressure : 10 L / min
Heating Gas Flow : 10 L / min
DL Temperature : 250 °C
BH Temperature : 400 °C
Interface Temperature : 300 °C


The MTS parameters were set to a single MRM per compound with threshold triggered MS/MS at 3 collision energies (15, 30, 45V) enabling confirmation of fragmentation widely. Library searching was performed on all CE spectral data in addition to a merged-CE spectrum.

Туре		Eve	nt#	+/-	Compound	Name m/z	Time (1.623	min -	8.982 min)		
MRM	* 3000 mars	21		+	Bromovalery	lurea 223.00>1	7.	12	2		
- Pro	oduct Ion Scan	22		it.	> CE:-15.0,	20.00:1000.00	~				1
(Product Ion Scan)		23	23		> CE:=30.0,	20.00:1000.00	- 0			1	
(Product Ion Scan)		24	- 3	+	> CE:-45.0,	20.00:1000.00			1.0		
- Product Ion Scan (Product Ion Scan) (Product Ion Scan)		25	25		Chlorpheniramine 275.00>23						
		26	7	*#s	> CE:-15.0,	20.00:1000.00	***			-	
		27		(t)	> CE:=30.0,	20.00:1000.00			100	1	
		28		+	> CE:-45.0,	20.00:1000.00		-	100		
		29	9		7-aminonimetazepam 266.10						
- Pro	oduct Ion Scan	30		*#s	> CE:-15.0,	20.00:1000.00				-	+
MRM			→ Acq. T	īme:	3.986]-	5,986	min Compour	nd Name:	Bromovalerylure	a	
Ch	Precursor n	1/2	Product	m/z	Pause Time	Dwell Time	Q1 Pre Bias	CE	Q3 Pre Bias	Use for Survey	
Ch1	223.00		179.95		1.0	1.0	-11.0	-12.0	-20.0	7	
Ch2	223.00		57.10		1.0	1.0	-11.0	-20.0	-23.0	J	
Ch3						4.					
AL 4											
Ch4	VI.										L.


Result

The MTS parameters were set to a single MRM per compound with threshold triggered MS/MS at 3 collision energies (15, 30, 45V) enabling confirmation of fragmentation widely. Library searching was performed on all CE spectral data in addition to a merged-CE spectrum.

One primary MRM is used for quantitation together with scanning data for compound identification and confirmation. Merged spectrum generates a similarity index score as opposed to a reference ion tolerance.

We evaluated the MTS method couple to modified QuEChERS using 115 standard drugs spiked into human whole blood or urine. Most compounds can be identified as the first hit in a spectral based library matching with merged-CE spectrum.

Table 2 Similarity Index of 115 drugs in whole blood or urine

	whole	hlood	urine		
compound	1ng/mL	10ng/mL	1ng/mL	10ng/mL	
7-Aminoclonazepam	91	91	92	94	
7-Aminoflunitrazepam	87	85	81	86	
7-Aminonimetazepam	74	79	65	68	
7-Aminonitrazepam	95	95	95	95	
8-hydroxyetizolam (M-III)	94	94	94	94	
Acetaminophen	98	97	98	98	
Acetylpheneturide	94	94	94	96	
Allylisopropylacetylurea	92	94	96	89	
Alprazolam	98	98	99	99	
Amitriptyline	79	77	75	77	
Amoxapine	92	88	91	93	
Aripiprazole	81	63	80	82	
Atropine	93	90	92	94	
Biperiden	98	98	99	98	
Blonanserin	92	94	94	92	
Bromazepam	84	91	84	86	
Bromovalerylurea	84	87	79	86	
Bromperidol	96	97	98	96	
Brotizolam	64	66	84	78	
Bupivacaine	98	98	98	98	
Caffeine	74	74	74	75	
Carbamazepine	94	88	89	92	
Carpipramine	95	96	96	96	
Chlordiazepoxide	87	87	90	90	
chlorpheniramine	95	95	95	95	
Chlorpromazine	98	99	99	99	
Clobazam	72	71	79	77	
Clocapramine	97	97	95	98	
Clomipramine	99	97	99	97	
Clonazepam	94	91	87	76	
Clotiazepam	85	78	83	83	
Clozapine	94	95	94	95	
Desipramine	96	91	87	93	
Desmethylclotiazepam	78	90	99	95	
Desmethyldiazepam	86	93	91	70	
Dextromethorphan	69	74	68	69	
Diazepam	83	81	77	84	
diclofenac	96	95	96	96	
Diltiazem	87	91	91	92	
Diphenhydramine	89	87	87	88	
Diprophyline	93	92	92	92	
Diquat	93	93	93	93	
Donepezil	97	97	97	97	
Dosulepin	80	87	72	72	
Duloxetine	100	100	100	100	
Escitalopram	95	97	95	90	
Estazolam	74	77	88	68	
Ethenzamide	93	93	95	93	
Ethyl loflazepate	88	88	91	88	
Etizolam	93	91	76	75	
Fludiazepam	95	96	93	91	
Flunitrazepam	100	85	96	88	
Flurazepam	97	97	95	96	
Fluvoxamine	93	94	95	95	
Gabapentin	92	90	96	90	
Glibenclamide	96	96	94	96	
Gliclazide	93	92	96	94	
				27	

compound	whole		rine	
	1ng/mL	10ng/mL	1ng/mL	10ng/m
Haloperidol	96	98	92	91
Hydroxyzine	96	95	96	96
Imipramine	96	95	93	97
Lamotrigine	91	95	92	91
Levetiracetam	92	93	92	93
Levomepromazine	96	97	98	99
Lidocaine	100	99	99	99
malathion	97	96	97	97
malathion	97	98	97	96
Maprotiline	85	85	82	92
Mefenamic acid	87	83	86	86
Mefenamic acid_neg	99	99	100	100
Memantine	96	92	91	93
Mepivacaine	98	98	98	98
Metformin	93	90	90	90
methomyl	91	92	93	93
· · · · · · · · · · · · · · · · · · ·	83	91		
Meyazalam	79		92	89
Mexazolam		68	88	88
Mianserin	81	79	88	83
Midazolam	80	78	83	76
Milnacipran	87	89	89	86
Mirtazapine	89	91	90	90
Mosapramine	87	88	85	87
Nemonapride	95	95	96	94
Nicotine	88	86	87	87
Nimetazepam	89	79	90	92
Nortriptyline	93	92	93	89
Olanzapine	85	84	85	83
Paroxetine	86	80	92	92
Pemoline	93	95	99	94
Pentazocine	85	87	84	81
Perospirone	98	98	98	99
Perphenazine	85	88	98	94
Pimozide	87	72	81	83
Pioglitazone	94	94	95	94
	95	95	94	95
Primidone				
Promethazine	91	96	94	99
Propericiazine	92	92	91	94
Quazepam	97	93	96	95
Quetiapine	96	92	95	95
Risperidone	99	99	97	97
Ropivacaine	97	98	98	98
Salicylic_acid (neg)	98	100	100	98
Sertraline	97	96	96	95
Spiperone	96	97	82	63
Sulpiride	97	97	98	97
Tandospirone	87	87	91	87
Temazepam	70	78	75	69
Timiperone	96	97	99	99
Tofisopam	100	99	100	94
Trazodone	92	93	93	91
Triazolam	66			
		66	66	72
Trihexyphenidyl	98	99	99	99
Warfarin	92	87	89	91
Zolpidem	81	81	81	78
Zopiclone	93	89	92	87

Conclusions

A MRM triggered product ion spectra method with merged-CE spectrum matching to identify compounds in biological samples is effective for forensic toxicology.

The product and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures. Not available in China.

Shimadzu Corporation www.shimadzu.com/an/

First Edition: June, 2017

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or "®".

Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®". Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.