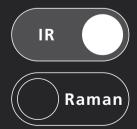


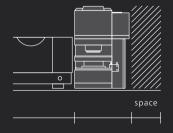
Infrared/Raman Microscope

AIRsight


3S Microscope

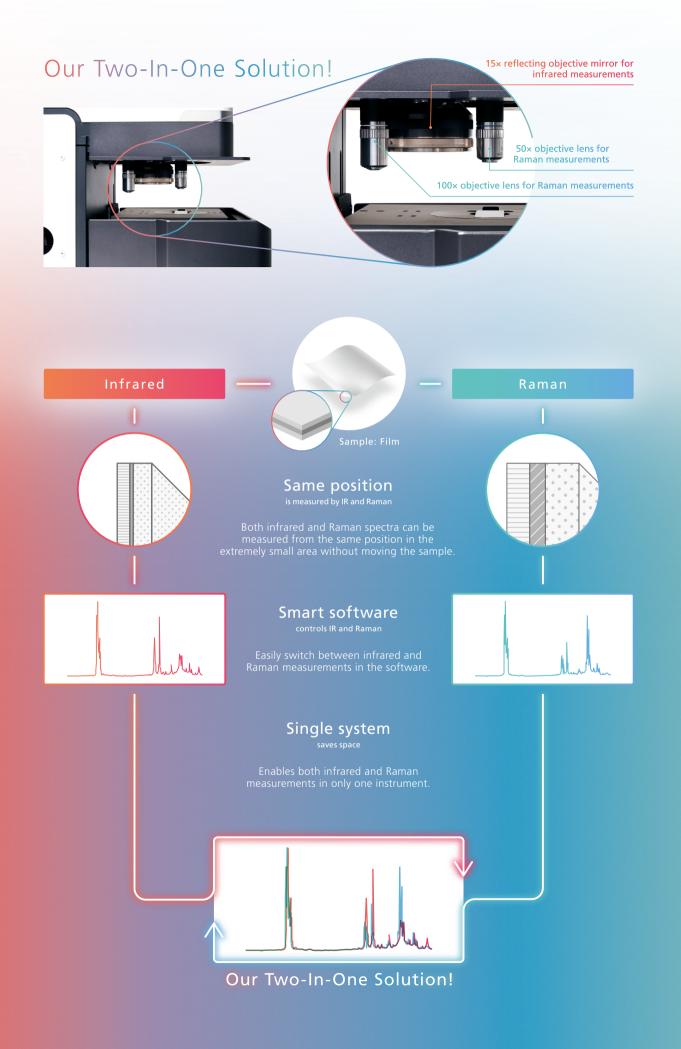
Same position

is measured by IR and Raman


No need to search for the same position

Smart software

controls IR and Raman


One easy-to-use software

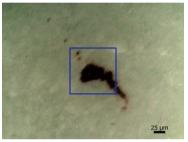
Single system

saves space

Small footprint

Applications

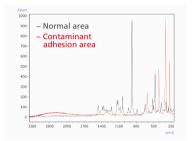
Contaminant


Infrared

Raman

This is an example of analyzing a contaminant (simulated sample) attached to the surface of a pharmaceutical tablet. Obtaining both infrared and Raman measurements from the same spot increases the accuracy of qualitative analysis to help identify the cause of contaminants.

For more details, click here.


Application News No.01-00394

Microscope Image of Contaminant

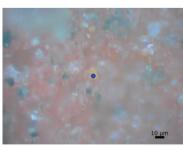
Infrared Spectra of Normal and Contaminant Adhesion Areas with Normal Area Identified as Mannitol

Raman Spectra of Normal and Contaminant Adhesion Areas with Contaminant Identified as Iron Oxide

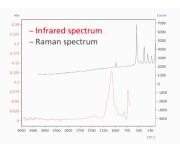
Pigment

Infrared

Raman


This is an example of analyzing pigment applied to wood. Because AIRsight microscopes can measure trace quantities, they are especially useful for measuring precious samples with historical value.

For more details, click here.

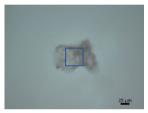

Application News No.01-00395

Appearance of Pigment Applied to Wood

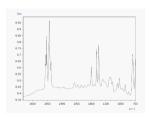
Microscope Image of Pigment Applied to a Wood Surface

Infrared and Raman Spectra of Pigment with BaSO₄ Identified from the IR Spectrum and Pb₃O₄ from the Raman Spectrum

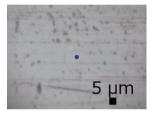
Microplastic


Infrared

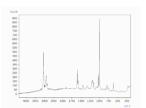
Raman


This is an example of analyzing a microplastic particle. The ability to measure infrared and Raman spectra from a wide range of microplastic particle sizes, from a few micrometers to several tens of micrometers in diameter, makes the system ideal for monitoring survey and research applications.

For more details, click here.


Application News No.01-00396

Microscope Image of Microplastic



Infrared Spectrum of 115 µm Long (Major Axis) and 53 µm Wide (Minor Axis) Microplastic Identified as Polystyrene

Microscope Image of Microbead

I(D)/I(G)

Raman Spectrum of 1 µm Diameter Microbead Identified as Polystyrene

Carbon Material

Raman

This is an example of analyzing a diamond-like carbon (DLC) film. Raman measurements can determine bonds and structures in carbon materials with high sensitivity for use in quality control of DLC films.

For more details, click here.

Application News No.01-00397

log(N(G)/I(G))

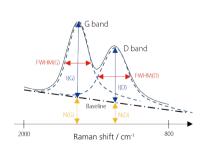
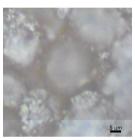


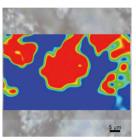
Diagram of Evaluation Parameters for Raman Spectrum of a DLC Film

	Disturbances in Crystal Structure	Crystallinity, Young's Modulus, and Density	Hydrogen Concentration
CH ₄ _center	0.32	182.17	-0.29
CH ₄ _periphery	0.32	181.40	-0.28
C ₂ H ₂ _center	0.34	190.85	-0.44
C ₂ H ₂ _periphery	0.34	190.25	-0.44

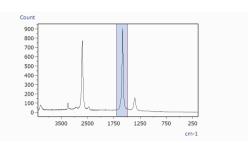
FWHM(G)


Results from Evaluating DLC Film (Formed with Either CH_4 or C_2H_2 Gas) on Two Types of Silicon Wafers (Measured in Two Locations—Near the Sample Center and Periphery)

Applications

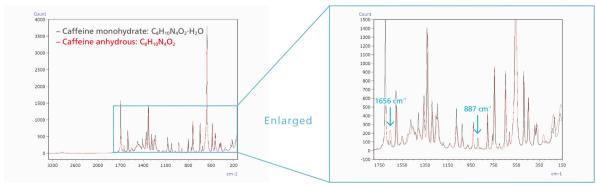

Li-Ion Battery

Raman


This is an example of analyzing the negative electrode material from a lithium-ion battery. Raman area mapping can be used to visualize the detailed distribution of components and structural characteristics in substances (crystallinity, defects, etc.). Therefore, it is useful for evaluating products and materials in R&D applications. Note: In the chemical image shown, the red areas indicate high concentrations of the component and blue areas indicate low concentrations.

Microscope Image of Negative

Raman Area Mapping Results Chemical Image of Graphite (G-Band)



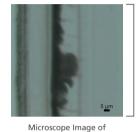
Chemical Image Created from Peak Area Values between 1482 and 1703 cm⁻¹

Polymorphic Crystal

Raman

This is an example of analyzing monohydrate and anhydrous forms of caffeine. Raman spectra can differentiate between compounds that have identical chemical structures but with different crystal polymorphisms. Evaluating the crystal form of substances with different solubility or efficacy characteristics is useful for controlling crystal formation during pharmaceutical manufacturing processes.

Raman Spectra of Caffeine Monohydrate and Caffeine Anhydrous

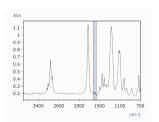

Enlargement of Raman Spectra (Peak differences indicated with blue arrows)

Multilayer Film

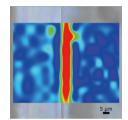
Infrared

Raman

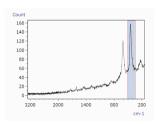
This is an example of analyzing a multilayer film. The distribution of each component can be visualized by using infrared and Raman area mapping to analyze a cut cross section from the film.


For more details, click here.

Application News No.01-00465


Surface layer

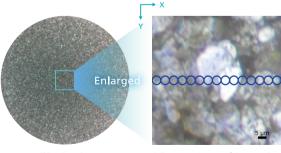
Infrared Area Mapping Results Chemical Image of Phthalate Esters



Chemical Image Created from Peak Areas between 1551 and 1624 cm⁻¹

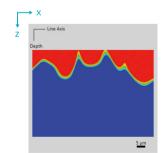
Multilayer Film Cross Section

Raman Area Mapping Results Chemical Image of Titanium Oxide (Rutile)

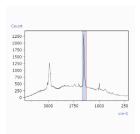

Chemical Image Created from Peak Area Values between 345 and 508 cm⁻¹

Automotive Paint Coating

Raman


This is an example of analyzing an automotive paint coating. Samples with characteristics that make it difficult to cut a cross section can be evaluated by analyzing the component distribution in the depth direction by Raman spectroscopy and evaluating the degradation status or other criteria from the surface.

* The optional High-Speed Mapping Program is separately required.



Shiny Exterior

Microscope Image of Automotive Paint Coating (Blue circles: Line axis in X-direction)

Raman Depth (Line) Mapping Results Chemical Image of Acrylic Resin

Chemical Image Created from Peak Area Values between 1383 and 1510 cm⁻¹


AIRsight

Characteristic Features

Same position

is measured by IR and Raman

Both FTIR and Raman Spectra Can Be Measured without Moving Samples

Because samples do not need to be moved, both infrared and Raman spectra can be measured from the same position in an extremely small area. That means information about both organic and inorganic substances can be obtained from the same position, which can significantly improve the accuracy of qualitative analysis. In addition, Shimadzu's proprietary wide-view camera and microscope camera (for infrared measurements) or objective lens (for Raman measurements) help improve sample observation efficiency. The wide-view camera not only enables observation of large areas up to 10×13 mm, but it also supports variable digital zooming. Furthermore, it shares positional information with the microscope camera and objective lenses.

The microscope camera can be used to observe areas as small as $30 \times 40 \, \mu m$, the $50 \times$ objective lens to observe areas as small as $15 \times 20 \, \mu m$, and the $100 \times$ objective lens to observe extremely small areas as small as $7.5 \times 10 \, \mu m$.

Smart software

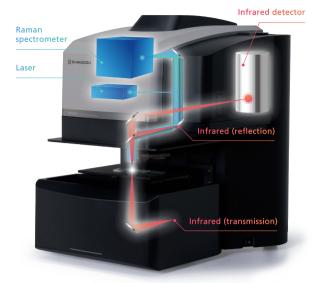
controls IR and Raman

One Software to Measure and Analyze Both FTIR and Raman Spectra

You can easily switch between infrared and Raman measurements with a click. In addition, infrared and Raman spectra can be superimposed and displayed, and various analyses can be performed.

Single system

saves space


Obtain Organic and Inorganic Information with One Instrument

Infrared microscopes can analyze organic substances, but it is difficult to obtain information for many inorganic substances.

On the other hand, Raman microscopes can obtain information about inorganic substances such as titanium oxide and carbon, in addition to organic substances. In contrast, a single AIRsight unit can analyze mixtures of both organic and inorganic substances.

AlRsight Features for Raman Measurements

Illustration of Infrared and Raman Light Paths
Infrared light path
Raman light path

✓ Confocal optical system used

Enables Raman measurements with excellent spatial resolution

☑ Equipped standard with 532 nm and 785 nm lasers

Characteristics of the lasers

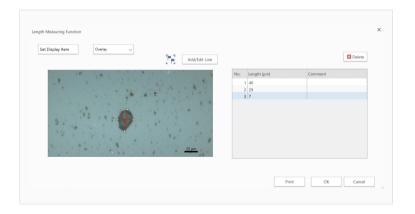
532 nm: Light scatters more easily, making it easier to obtain peak intensities.

785 nm: Less affected by fluorescence, making it more suitable for fluorescent samples.

✓ Systems can be equipped with either a 50× or 100× objective lens (or both)

Selectable depending on the target measurement area

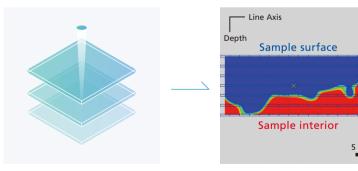
Includes XYZ correction for lens switching between infrared and Raman measurements


Enables both infrared and Raman measurements from the same location.

Length Measurement Function

Infrared

Raman

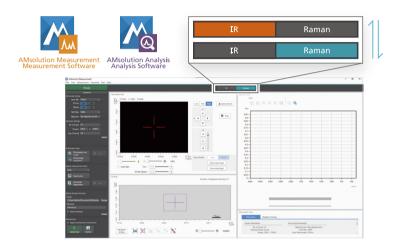

AMsolution software now includes functionality for measuring lengths, including the lengths of objects in infrared Raman microscope images. Also, length measurement results can be output with a single button click.

Depth Measurements

Raman

Enables Analysis in the Depth Direction (Z-Direction)

Example of Depth Measurements (at Line)


Raman measurements can measure depth either at a single point or along a line*. If a transparent sample, such as plastic or glass, has a thickness (depth) dimension, the laser light components that can penetrate the sample can be used to measure the sample interior. Even if the sample is colored or cloudy, measurements are generally possible as long as the interior can be observed.

* Measuring depth (at a line) requires using an optional High-Speed Mapping Program (P/N 206-36299-41).

AMsolution Software

AMsolution includes measurement software (AMsolution Measurement) and analysis software (AMsolution Analysis). The measurement software can control both infrared and Raman measurements via the same window. That means all processes, from image acquisition to measuring infrared and Raman spectra at the same location, can be performed smoothly. The analysis software can overlay and search infrared and Raman spectra, create libraries, and so on. The data measured in infrared mode can be imported to LabSolutions™ IR and analyzed.*¹ The data measured with AlMsolution, a software program for infrared microscopes, can be analyzed with AMsolution, a software program for AlRsight.

*1 Only with LabSolutions IR Ver. 2.31 or later

High-Speed Mapping Program

Line and area mapping modes are available for both infrared and Raman measurements, and a depth (line) mapping mode is available for Raman measurements. For infrared measurements, in addition to typical transmission and reflection mapping modes, an ATR microscope mapping measurement can be selected (which requires an optional ATR objective mirror and pressure sensor). Using the high-speed mapping program, measurements can be performed with the specified number of accumulations at points determined to contain samples based on the spectra²². Points determined to contain no samples are measured at a single accumulation, which allows faster performance while maintaining the spectra's quality. Using the mapping measurement results, a chemical image can be created based on peak heights/areas, multivariate analysis (PCA/MCR), or similarity to a target spectrum, allowing visualization of the distribution of components that otherwise cannot be confirmed visually.

*2 The high-speed mapping function is only available in the area mapping mode for infrared (transmission/reflection) measurements.

KnowItAll® Bundle

Activate John Wiley & Sons, Inc. KnowltAll*3 from a button in the LabSolutions IR software to automatically transfer the active spectrum. With KnowltAll, you can perform searches using a rich library, analysis of constituent components and constituent ratios by mixture analysis, and functional group analysis by searching for functional groups of specified peaks.

*3 AMsolution does not work with KnowltAll Version 2018 and earlier.

Particle Analysis Program

By adding a particle analysis program to AMsolution, the chemical images obtained from mapping measurements*4 can be used to calculate individual particle qualities, as well as the major axis, minor axis, mass*5, and volume*5. In addition, this statistical information can be easily displayed. The program can be used from the [Particle Analysis] tab page, thereby maintaining the same operational setup as the AMsolution analysis software. The particle analysis program can be used for a variety of analyses, including the analysis of microplastics and contaminant analysis.

- *4 The optional High-Speed Mapping Program is separately required.
- *5 Mass and volume are calculated based on the theoretical formula (Formula (1) [log10(M)=b·log10(S)+a]) used in the article referenced below. This theoretical formula applies only to microplastics. Shimadzu cannot guarantee the validity of the mass results. Tomoya Kataoka, Yota Iga, Rifqi Ahmad Baihaqi, et al. Geometric relationship between the projected surface area and mass of a plastic particle Water Research. 2024;261:122061.

Instrument Validation

A validation program is included standard with the AMsolution measurement program for inspecting and validating the performance of Shimadzu infrared and Raman microscopes. The infrared mode is validated using a polystyrene film in accordance with the Japanese Pharmacopoeia, US Pharmacopeia, European Pharmacopoeia, and Chinese Pharmacopoeia. The Raman mode is validated using polystyrene pellets to inspect wavenumber accuracy in accordance with the Japanese Pharmacopoeia, US Pharmacopeia, and European Pharmacopoeia. That means analysts can inspect the basic performance of the instrument themselves to ensure that highly reliable data is obtained.

Infrared Mode Inspection Parameters

- Shape and size of power spectrum
- Based on polystyrene film spectrum:
- Resolution
- Transmittance (or absorbance)
- reproducibility
- Wavenumber reproducibility

- Wavenumber accuracy

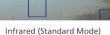
- Peak resolution function

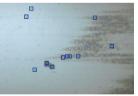
- The wavenumber reproducibility is an inspection parameter only required for the Japanese Pharmacopoeia.
- The Peak resolution function is an inspection parameter only required for the Chinese Pharmacopoeia.
- The inspection parameter of US Pharmacopeia is only wavenumber accuracy.

Raman Mode Inspection Parameters

- Based on polystyrene pellet spectrum:
- Wavenumber accuracy

Library Creation Function


Functionality for creating libraries is included standard with the AMsolution analysis program. Analysts can create their own library by registering infrared and Raman spectra they acquire. Created libraries can also be used for searches. Registering the materials used in products and the substances used in manufacturing processes and using them as a library can improve the accuracy of searches.


Automatic Contaminant Recognition System

Functionality for automatically recognizing contaminants is included standard. The analyst simply clicks one button for the software to automatically recognize contaminants. Two types are available for the infrared mode: the standard type or the micro type for extremely small areas, which can be selected based on the purpose of analysis. Samples can either be measured with the automatically selected measurement positions left unchanged or the analyst can add or delete measurement positions. A sample image is automatically saved for each measured spectrum. That makes it easy to confirm the sample or measurement positions later.

Infrared (Micro Mode)

Raman

- · Automated support functions utilizing digital technology, such as M2M, IoT, and Artificial Intelligence (AI), that enable higher productivity and maximum reliability
- Allows a system to monitor and diagnose itself, handle any issues during data acquisition without user input, and automatically behave as if it were operated by an expert
- Supports the acquisition of high quality, reproducible data regardless of an operator's skill level for both routine and demanding applications

Accessories

Optional Products for Infrared Measurement

TEC MCT Detector P/N 206-36820-58 Room Temperature Detector (DLATGS) P/N 206-32580-42

Equipping the AIRsight with the TEC MCT (peltier cooled MCT) detector*1 or room temperature detector*1,*2 makes it possible to obtain infrared spectra without using liquid nitrogen. If more sensitivity is required, simply switch to the standard T2SL detector*3 in the software.

- *1 A TEC MCT and DLATGS cannot be installed at the same time.
- *2 The DLATGS can measure across a wide wave-number range. However, its sensitivity is substantially lower than the T2SL and TEC MCT.
- *3 Liquid nitrogen is required when using the T2SL.

Infrared spectra of polypropylene-based (containing TALC) resin for automotive bumpers using the three different detectors

ATR Pressure Sensor P/N 206-32603-42

This pressure sensor is for ATR measurements using an ATR objective mirror. It prevents prism damage due to excessive pressure. It

can also be used to automatically measure how tightly the sample is pressed against the prism.

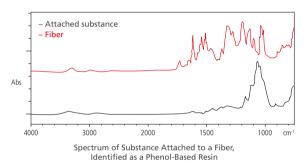
Particle Filter (PF) Holder

For 13 mm dia. (2 pc): P/N 206-36610-41 For 25 mm dia. (2 pc): P/N 206-36610-42

The PF holder fastens the Membrane Filter (PTFE or stainless steel (SUS)) used in microplastics analysis

For 13 mm dia

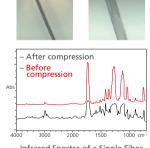
by gripping it. This prevents the Membrane Filter from sagging during drying, which keeps the surface flat and enables more accurate measurements.


ATR Objective Mirror

Ge prism: P/N 206-32600-41

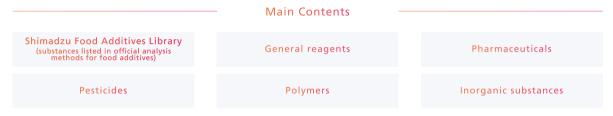
Featuring a cone-type prism, this single-reflection objective mirror results in 15× magnification and a 45-degree mean incident angle. The slide-on type prism makes it easy to switch back and forth between visible observation and infrared measurement modes. The mirror is especially useful for analyzing samples

that do not transmit or reflect infrared light easily, such as paper or plastic samples, or stains and other extremely thin areas.



Diamond Cell C II P/N 208-92289-01

This compression cell is used to compress micro samples very thin for direct measurement under the microscope. It can be used for samples such as plastics and fibers. This C II cell features a large thin window plate made of artificial diamond (1.6 mm diameter).



Infrared Spectra of a Single Fiber

Libraries

Infrared Libraries Containing about 12,000 Spectra

Systems are equipped standard with an extensive selection of libraries, including proprietary Shimadzu libraries and libraries for substances ranging from typical reagents to macromolecules. That means the standard configuration provides plenty of data for qualitative analysis without purchasing additional libraries.

Total of about 12,000 spectra

Optional Libraries

Contaminant Library for LabSolutions IR P/N 206-33179-91

Shimadzu's new proprietary library is especially useful for analyzing contaminants in tap water and foods. The library includes information from actually collected contaminant samples and information about service parts commercially marketed for tap water applications. It also includes a collection of X-ray fluorescence profiles (PDF files). Consequently, it can significantly improve the accuracy of contaminant searches. Unlike previous libraries, this library of mixture information covers the extensive knowledge and experience necessary for qualitative analysis.

Thermal-Damaged Plastics Library*1 P/N 206-33039-91

Unlike previous libraries, this library includes information about plastics that have degraded due to oxidation associated with heat. The library is especially useful for analyzing contaminants, which are commonly degraded.

*1 Spectra were measured and acquired at the Hamamatsu Industrial Research Institute of Shizuoka Prefecture and compiled as a library by Shimadzu Corporation.

UV-Damaged Plastics Library*2 P/N 206-31808-41

Unlike previous libraries, this library includes information about plastics degraded by ultraviolet rays. Because many contaminants are degraded, this library is especially useful for such cases. It is also useful for analyzing microplastics.

*2 Plastics degraded using an Iwasaki Electric super accelerated weathering tester were measured and compiled as a library by Shimadzu Corporation.

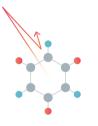
Raman

John Wiley & Sons, Inc. Raman spectrum libraries can be added. Wiley offers libraries of spectra from a wide range of compounds, including monomers, polymers, inorganic compounds, and compounds related to biochemistry or forensic chemistry.

Database Example

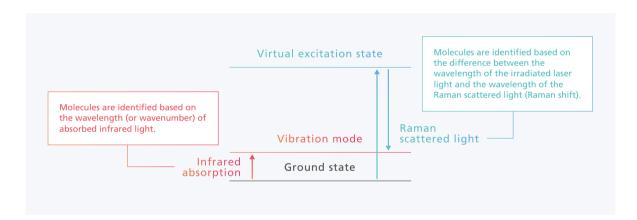
Product Name	Database Code	Number of Spectra
Sadtler Controlled & Prescription Drugs 1-2	RZ, RZ2	1,850
Sadtler Flavors & Fragrances	FFR	600
Sadtler Inorganics	RI	1,630
Sadtler Polymers & Monomers (Basic) 1	QR	1,680
Sadtler Polymers & Processing Chemicals	RA	495
Sadtler Standards 1-6	RST1, RST2, RST3, RST4, RST5, RST6	6,000
KnowItAII Raman Spectral Library (Annual Subscription)	_	25,000

AIRsight


Infrared Spectroscopy and Raman Spectroscopy

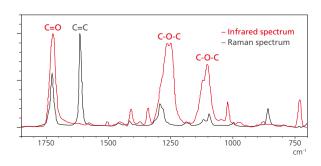
Differences between Infrared Spectroscopy and Raman Spectroscopy

Infrared Spectroscopy


Samples are irradiated with infrared light to measure how much light is transmitted through the sample and how much is reflected.

Raman Spectroscopy

Samples are irradiated with laser light to measure the amount of Raman scattering that occurs from the sample.



Enables Acquisition of Mutually Complementary Molecular Information

Infrared and Raman Spectra of Polyester (Laser Wavelength: 532 nm)

Infrared Spectroscopy is Better-Suited Raman Spectroscopy is Better-Suited

Polar bonds O-H, N-H, C=O, C-O-C Non-polar bonds C=C, S-S, C-S

Infrared Spectroscopy

Applicable components:

Plastics, organic food components, and some inorganic components

Features

- Extensive spectral libraries available
- Widely used, resulting in plentiful application examples
- Rarely damages samples
- ATR (optional), transmission, or reflection methods can be selected depending on the sample

Raman Spectroscopy

Applicable components:

Carbon materials (CNT, DLC, diamond, etc.), pigments, additives and other inorganic substances, and some organic substances

Features

- Especially well-suited for analyzing carbon materials (carbon nanotubes, diamond, etc.)
- Enables analysis in the depth direction
- Transparent materials (glass, etc.) do not absorb visible laser light, so samples can be measured directly in containers
- High spatial resolution (extremely small areas can be targeted)

Examples of Problems Solved

Contaminant components cannot be identified with an infrared microscope alone.

Contaminant was identified based on both infrared and Raman measurement results.

The target area is too small to be measured with an infrared microscope.

The infrared and Raman microscope enabled even smaller areas to be targeted and measured.

Measuring the same sample location with both infrared and Raman is desired.

The infrared and Raman microscope enabled the same location to be quickly measured without moving the sample.

Detailed analysis of both organic and inorganic components is desired.

Combining infrared and Raman spectroscopy enabled material analysis.

System Configuration Examples

IRXross™ + AIRsight™ W1086 × D668 × H604 mm

IRTracer[™]-100 + AIRsight[™] W1136 × D705 × H604 mm

AIRsight, LabSolutions, the Analytical Intelligence logo, IRXross and IRTracer are trademarks of Shimadzu Corporation or its affiliated companies in Japan and/or other countries. KnowltAll is a registered trademark of John Wiley & Sons, Inc. in the US, UK, EU & China.

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or "®".

Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The contents of this publication are provided to you "as is" without warranty of any kind, and are subject to change without notice. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication.