

Application

X선 분석

News

No.X273K

EDX를 통한 알약 ICH Q3D원소 불순물 분석

- 제17개정 일본 약전 제2추보 한도시험에 준거한 검증 -

제17개정 일본 약전 제2추보(이하 약전 제2추보)가 2019년 6월 28일 고시되었습니다. 추천 분석방법은 ICP-MS/ICP-AES이지만, 요 건을 만족하는 경우에 분석방법 교체가 인정되고 있습니다. ^{1), 2)}

여기서, 에너지분산형 형광X선분석장치 EDX-7000을 이용해서 약전 제2추보[2.66원소불순물시험법 3.1한도시험 방법"에 준거해서 경구 고형제제(알약)의 원소불순물 Validation을 실시했습니다.

또한, 알약 원소불순물의 유의성을 평가하는 시험을 실시하기 위해서 PDE값^{*2}의 30%(관리기준)를 최대 일일 투여량으로 나눈 값을 목표농도(허용농도)로 설정하고, 검증을 실시했습니다.

*1 EDX 측정 시료는 [분말]이기 때문에, 시험에 기재된 [용액]을 분말로 대체했습니다.

*2 PDE: Permitted Dally Exposure, 허용 일일 폭로량

T. Nakao, H. Nakamura

■ 원소

측정원소는 ICH Q3D 3 에 기재되어 있는 방법에 준거하여 Risk Assessment 필수 7원소(Class1, 2A)와 의도적으로 첨가된 원소 Pd(Class2B)로 하였습니다.

Class1 : As, Hg, Pb, Cd
Class2A : V, Co, Ni
Class2B : Pd

■ 시료

검량선시료 : ICP용 표준액을 첨가해 조제한 셀룰로오스 분말

피험시료 : 표1에 따름

표1 피험시료

. — .					
알약	경구고형제제(의료용의약품)				
유효성분함유량	30mg/0.5g중				
제형	소정				
최대일일투여량	0.5g				
주성분	하이드록시 프로필 셀룰로오스				

■ 목표농도

PDE값의 30%를 최대 일일투여량으로 나눈 값을 목표농도로 했습니다. 각 원소의 PDE값을 표2에 정리했습니다.

표2 경구제제의 PDE값과 목표농도

원소	단위	As	Hg	Pb,Cd	Со	V,Pd	Ni
경구제PDE값	μg/day	15	30	5	50	100	200
목표농도	μg/g	9	18	3	30	60	120

■ 시료조제

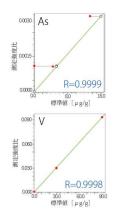
피험시료를 분쇄해서 분말화 했습니다. 검량선 시료, 표준분말, 첨가시료 1, 2는 ICP용 표준액을 첨가해서 조제했습니다. 상세 내용을 표3에 정리했습니다.

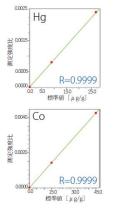
표3 검증에 이용한 시료

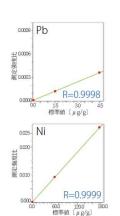
시료명	매트릭스	첨가농도	제작수n
검량선시료	셀룰로오스분말	0J, 0.5J, 1.5J	각 1
표준분말	셀룰로오스분말	1.0j	3
 첨가시료1	피험시료 피험시료	목표농도	3, 6
첨가시료2	피험시료	목표농도80%	3
비첨가시료	피험시료	첨가 X	3, 6

■ 시료 전처리

각 시료는 폴리프로필렌필름을 깐 시료용기에 넣었습니다. 시료 이미지를 그림1에 첨부합니다.






그림1 표준분말(좌)과 첨가시료(우)

■ 검량선

검량선은 0J, 0.5J, 1.5J 3점으로 작성했습니다. 검량선 및 상관계수 R을 그림2에 나타냅니다. 상관계수 R은 0.999이상으로 양호한 직선성을 얻었습니다.

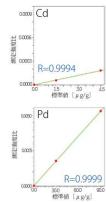


그림2 검량선과 상관계수

표4 Validation 요건·적합기준·결과

Validation 요건		방법	적합기준	결과	판정	
①검출감도	(1)	표준분말 : n=3을 각3회 측정	첨가시료1의 평군값이 표준분말 평군값의	[표5 결과(1)]	적합	
		첨가시료1 : n=3을 각3회 측정	±15%이내일 것			
	(2) 첨가시료2 : n=3을 각3회 측정		첨가시료2의 평균값 < 표준분말의 평균값	[표5 결과(2)]	적합	
②특이성	- 비첨가시료와 비교		매트릭스성분, 공존원소에 대해서	[그림3]	적합	
	- 스펙트럼 확인		특이적으로 검출할 수 있을 것	- As는 Pb, Co는 Fe의 중첩보정을 적용		
	- 매트릭스 성분, 공존원소		(검출감도 요건도 만족할 것)	- 비첨가시료와 비교할 때 첨가시료1의		
	중첩의 영향 제거, 보정			각 원소 스펙트럼 피크는 명료		
③병행정도	첨가시료1의 6개를 측정		첨가시료1의 6개를 측정 상대표준편차(RSD) ≤ 20%		[II 6]	적합

표5 ①검출감도 $[\mu q/q]$

								11 3 31	
원소	As	Hg	Pb	Cd	V	Со	Ni	Pd	판정
첨가농도	9.0	18.0	3.0	3.0	60	30	120	60	
(A) 표준분말1.0J	9.0	18.2	3.0	2.9	28.5	29.9	120.5	59.1	적합
(B) 비첨가시료	<0.47	<0.26	< 0.63	<1.15	<2.25	<1.17	<0.52	< 0.63	
(C) 첨가시료1(목표농도)	9.3	17.8	3.1	2.9	56.7	29.3	117.9	59.5	
결과(1) [(C)/(A)-1] x 100[%]	+3.6	-2.2	+2.6	0.0	-3.1	-2.0	-2.2	+0.7	
첨가농도	7.2	14.4	2.4	2.4	48	24	96	48	적합
(D) 첨가시료2(목표농도80%)	7.5	13.9	2.4	2.1	45.9	23.3	95.1	48.2	
결과(2) (D)<(A)의 관계	<	<	<	<	<	<	<	<	

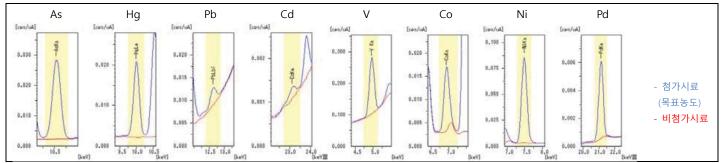


그림3 ②특이성

표6 ③병행정도 [µg/g]

원소	As	Hg	Pb	Cd	V	Со	Ni	Pd	판정
연속측정시 정량값의 평균	9.3	17.5	3.0	2.9	56.1	28.9	119.0	60.4	적합
표준편차	0.09	0.09	0.06	0.19	0.83	0.22	0.76	0.32	
RSD [%]	0.9	0.5	1.9	6.6	1.5	0.8	0.6	0.5	

■ Validation 결과

Validation요건·방법·적합기준·결과를 표4에, 상세 내용을 표5, 6 및 그림3에 나타냈습니다.

■ 결과

EDX-7000을 이용한 약전 제2추보에 준거한 방법을 통한 원소 불순물분석(한도시험)은 유효하고, 유사한 조성의 제제와 원약 관리 에 응용할 수 있다고 생각됩니다.

제제 종류와 투여량에 따라 ICP-MS/ICP-AES와 함께 EDX를 활용 함으로서 비용절감을 기대할 수 있습니다.

표2 측정조건

장비 : EDX-7000, 터렛 옵션 원소 : As, Hg, Pb, Cd, V, Co, Ni, Pd

분석그룹 : 정량 : SDD / Rh 타겟 검출기/X-ray tube X-ray tube : Rh 타겟 전압 - 전류 : 50[kV] - 자동[µA]

콜리메이터/1차 필터 : 3[mmφ] / #1(Cd, Pd), #2(V), #4(As, Hg, Pb, Co, Ni)

분위기 : 대기

적분시간/데드타임 : 1,800[초] x 3(#1, #2, #4) / 최대 30[%]

<참고문헌>

- 1) 제17개정 일본약전 제2추보 (후생노동성고시 제49호 2019년6월28일)
- 2) Application news No.X271 EDX를 이용한 원약ICH Q3D원소불순물분석
- 3) 의약품의 원소불순물 가이드라인에대해서 (2015년9월30일 후생노동성의약식품국심사관리과장통지)

www.shimadzu.co.kr