

Application News

GC-MS GCMS-QP[™]2020 NX, GCMS-TQ[™] NX series

Fast Analysis of Organic and Amino Acids in Café Late by Solid Phase-Derivatization method

Y. Nakagawa

User Benefits

No. M308

- ◆ 10 mins sample extraction with SP-Deriv. method followed by 23 mins MRM run (Smart Metabolites Database™)
- ◆ 5 min analysis time with TraverseMS
- Selective removal of carbohydrates from sugar rich food samples

Introduction

Food products with a high concentration of sugars are known to pose extraction issues both during a freeze drying (e.g. loss of sample by explosive boiling) as well as in the subsequent derivatization steps (e.g. derivatization reagent quenching).

As a solution to these issues, SP-Deriv. method using Presh-SPE (Wakayama, Japan, AiSTI Co., Ltd) was employed to selectively remove carbohydrates from sugar rich samples before derivatization steps.

In this article, results from the conventional overnight method (i.e. Bligh and Dyer extraction, drying and derivatization) and the SP-Deriv. method were compared.

Fig. 1 Presh (left) and GCMS-TQ[™]8040 NX (right)

Methods – Extraction and Analysis

The same sample was extracted separately by two methods; the conventional and the Solid Phase-Derivatization.

For the conventional method, a Café Late sample (n=5) was extracted in accordance with the Shimadzu sample pretreatment handbook for metabolomics (document number: C146-2181).

For comparison, the same Café Late sample (n=5) was extracted as per Presh-SPE ACXs instruction (P/N SA-5589-003, AiSTI Co., Ltd) with the sample weight of 50 μ L.

Both method employed 2-isopropylmalic acid as an internal standard and analyzed with the instrument configurations and analytical conditions according to Smart Metabolites Database (Table 1 and 2).

Table 1 Instrument Configurations		
GC-MS	: GCMS-TQ 8040 NX	
Auto Injector	: AOC™-20i Plus	
Auto Sampler	: AOC-20s Plus	
Analytical Column	: BPX-5 (30m \times 0.25 mm l.D., df=0.25 $\mu\text{m})$ P/N: 054101	
Glass Insert	: Split liner with wool	

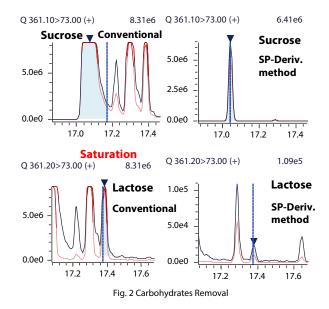
Table 2 Analytical Condition

Table 2 Analytical Conditions		
GC		
Inlet temp.	: 250 °C	
Injection Mode	: Split	
Spit ratio	: 30	
Carrier gas	: Helium	
Control Mode	: Constant linear velocity (39.0 cm/s)	
Column oven temp.	: 60 °C (1 min) \rightarrow (15 °C /min) \rightarrow 330 °C (1 min) Total 23.0 mins	
Purge flow rate	: 5 mL/min	
Sample Inj. volume	: 1 μL	
MS		
Ion Source Temp.	: 200 °C	
Interface temp.	: 280 °C	
Measurement Mode	: MRM	
SIM ions (m/z)	: Refer to Smart Metabolites Database	

Results

The number of compounds detected were almost identical between the conventional method and the SP-Deriv. method (Table 3).

Table 3	The Number	of Compounds	Detected
---------	------------	--------------	----------


# of cpds found	Conventional	Presh
Organic Acid	41	40
Amino Acid	7	7

As shown below in Table 4, reproducibility (n=5) were also comparable between the conventional method and the SP-Deriv. method (Table 4). The % RSDs were calculated by averaging % RSD of each of the 41 compounds in organic acid and each of 7 compounds in amino acid respectively.

Table 4	Average	Reproducibi	lity (n=5) in % RSD
---------	---------	-------------	-----------	------------

% RSD	Conventional	Presh
Organic Acid	18.0	25.2
Amino Acid	47.2	27.2

Carbohydrates that would cause extraction issues (e.g. sample loss by sudden boiling, and poor derivatization of difficult compounds by quenching) in conventional methods were effectively and selectively removed as illustrated in the chromatograms below in Fig. 2.

The removal of carbohydrates as illustrated by the chromatograms on the left bottom, bears particular importance in GC-MS as they are notorious in shortening a maintenance cycle of the instrument.

The total numbers of compounds detected (e.g. organic acids, amino acids, fatty acids, carbohydrates) by Smart Metabolites DB are listed below in Table 5.

Table 5 The Total Number of Identified Peaks
--

# of cpds detected	Conventional	Presh
Total	121	102

It should be noted here that with the use of TraverseMS (Reifycs Inc), the data analysis time can be greatly reduced by automation. The acquired data can be simply loaded onto TraverseMS software and multivariate analysis (e.g. PCA, HCA) can be conducted on the same software platform.

Summary

A quick sample extraction using SP-Deriv. method (Wakayama, Japan, AiSTI Co., Ltd) was performed on café late for organic and amino acids. The extraction took approximately 10 mins per sample.

The results were compared against those obtained with a conventional overnight method using the Bligh and Dyer extraction solution followed by overnight drying and derivatization on the second day as per the Shimadzu Metabolomics handbook (document number C146-2181).

The results obtained with SP-Deriv. method and the conventional method were comparable in the number of organic and amino acids found and reproducibility (n=5), though the sample extraction time became >10-100 times faster with SP-Deriv. method.

Shimadzu Corporation would like to thank Ryoichi Sasano from AiSTI Co., Ltd for his guidance in this experiment.

GCMS-QP, GCMS-TQ, AOC and Smart Metabolites Database are trademarks of Shimadzu Corporation in Japan and/or other countries.

Shimadzu Corporation

Analytical & Measuring Instruments Division **Global Application Development Center**

First Edition: Nov. 2020

For Research Use Only. Not for use in diagnostic procedure. This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See http://www.shimadzu.com/about/trademarks/index.html for details. Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they

are used with trademark symbol "TM" or "@". The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or

completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.