

# Application Data Sheet



GC-MS Gas Chromatograph Mass Spectrometer

# Automatic Optimization of Transitions and Collision Energies

In GC-MS/MS MRM mode, the optimal transitions (combinations of precursor ion and product ion) and collision energies (CEs) must be determined. However, optimizing transitions can be difficult when analyzing many compounds. GCMSsolution (ver. 4.20 and later) control software for the GCMS-TQ series is equipped with an MRM optimization tool. This Data Sheet introduces the procedure for optimizing transitions using the MRM optimization tool.

#### **Procedures for Optimization of Transitions**

Transition is a combination of product ion and precursor ion. For MRM analysis, the best combination of product ion and precursor ion must be determined.

Elements of MRM analysis

#### About transition



Product ion: Product ion is generated from the certain ion. Original ion is the Precursor ion, same as the daughter ion.

LAAN-J-MS-E098

Optimization of the transitions consists of four steps (below). Using the MRM optimization tool, only analyzing the data acquired in the Scan mode, allows optimizing the transition automatically.



#### Step 1: Analyze Data in Scan Mode

Run the GCMS Postrun program. Display the data file collected in Q3 Scan mode. Check that the compounds are identified correctly.



# Step 2: Create a Method File for Product Ion Scan Mode

After confirming the compounds are identified correctly, click the An MS table is created automatically.



Select [Product Ion Scan]; an MS table is then automatically created. The created table can be corrected while checking the chromatogram. If no problem exists in the MS table, a method file for Product Ion Scan Mode is created

### Step 3: Collect Data in Product Ion Scan Mode



To use the MRM optimization tool, just set the parameters shown in the figure on the left to automatically create multiple method files (product ion scan mode) and batch files with the CEs configured. Using the batch file, start a consecutive product ion scan analysis.

## Step 4: Determine the Transitions and Their Optimal CEs



Transitions can be optimized to select the data files obtained through measurements using the MRM optimization tool. Fig. 1 shows the graph of transitions and CEs. CEs were optimized with high accuracy.

Utilizing high-speed scan control technology, the GCMS-TQ series allows a simultaneous product ion scan analysis of multiple components. As shown in Fig. 1, even if you had optimized the CEs and transitions in the simultaneous analysis, CEs could be optimized with high accuracy. This is useful when optimizing multicomponent transitions, such as when migrating to GC-MS/MS from GC-MS methods.

Fig. 1: Component Transitions and CEs

The optimized transitions can be registered in Smart Database. With Smart Database, you can automatically create MRM analysis methods using the transitions and CEs determined with the MRM optimization tool. For the procedure for creating MRM analysis methods, see Application Data Sheet No. 97.



For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

First Edition: May, 2014

Shimadzu Corporation www.shimadzu.com/an/

icon.

Йĸ